Type: \(\displaystyle A^{1}_2+2A^{1}_1\) (Dynkin type computed to be: \(\displaystyle A^{1}_2+2A^{1}_1\))
Simple basis: 4 vectors: (1, 2, 2, 2, 2, 2, 1, 1), (0, -1, 0, 0, 0, 0, 0, 0), (0, 0, 0, 1, 2, 2, 1, 1), (0, 0, 0, 0, 0, 1, 1, 1)
Simple basis epsilon form:
Simple basis epsilon form with respect to k:
Number of outer autos with trivial action on orthogonal complement and extending to autos of ambient algebra: 0
Number of outer autos with trivial action on orthogonal complement: 0.
C(k_{ss})_{ss}: 2A^{1}_1
simple basis centralizer: 2 vectors: (0, 0, 0, 0, 0, 1, 0, 0), (0, 0, 0, 1, 0, 0, 0, 0)
Number of k-submodules of g: 37
Module decomposition, fundamental coords over k: \(\displaystyle V_{2\omega_{4}}+4V_{\omega_{3}+\omega_{4}}+2V_{\omega_{2}+\omega_{4}}+2V_{\omega_{1}+\omega_{4}}+V_{2\omega_{3}}+2V_{\omega_{2}+\omega_{3}}+2V_{\omega_{1}+\omega_{3}}+V_{\omega_{1}+\omega_{2}}+4V_{\omega_{4}}+4V_{\omega_{3}}+3V_{\omega_{2}}+3V_{\omega_{1}}+8V_{0}\)
g/k k-submodules
idsizeb\cap k-lowest weightb\cap k-highest weightModule basisWeights epsilon coords
Module 11(0, 0, 0, 0, 0, -1, 0, 0)(0, 0, 0, 0, 0, -1, 0, 0)g_{-6}-\varepsilon_{6}+\varepsilon_{7}
Module 21(0, 0, 0, -1, 0, 0, 0, 0)(0, 0, 0, -1, 0, 0, 0, 0)g_{-4}-\varepsilon_{4}+\varepsilon_{5}
Module 33(0, -1, -2, -2, -2, -2, -1, -1)(1, 0, 0, 0, 0, 0, 0, 0)g_{1}
g_{9}
g_{-54}
\varepsilon_{1}-\varepsilon_{2}
\varepsilon_{1}-\varepsilon_{3}
-\varepsilon_{2}-\varepsilon_{3}
Module 41(0, 0, 0, 1, 0, 0, 0, 0)(0, 0, 0, 1, 0, 0, 0, 0)g_{4}\varepsilon_{4}-\varepsilon_{5}
Module 51(0, 0, 0, 0, 0, 1, 0, 0)(0, 0, 0, 0, 0, 1, 0, 0)g_{6}\varepsilon_{6}-\varepsilon_{7}
Module 62(0, 0, 0, 0, 0, -1, 0, -1)(0, 0, 0, 0, 0, 0, 1, 0)g_{7}
g_{-15}
\varepsilon_{7}-\varepsilon_{8}
-\varepsilon_{6}-\varepsilon_{8}
Module 72(0, 0, 0, 0, 0, -1, -1, 0)(0, 0, 0, 0, 0, 0, 0, 1)g_{8}
g_{-14}
\varepsilon_{7}+\varepsilon_{8}
-\varepsilon_{6}+\varepsilon_{8}
Module 82(0, 0, 0, 0, 0, 0, 0, -1)(0, 0, 0, 0, 0, 1, 1, 0)g_{14}
g_{-8}
\varepsilon_{6}-\varepsilon_{8}
-\varepsilon_{7}-\varepsilon_{8}
Module 92(0, 0, 0, 0, 0, 0, -1, 0)(0, 0, 0, 0, 0, 1, 0, 1)g_{15}
g_{-7}
\varepsilon_{6}+\varepsilon_{8}
-\varepsilon_{7}+\varepsilon_{8}
Module 102(0, 0, 0, -1, -1, -1, 0, -1)(0, 0, 0, 0, 1, 1, 1, 0)g_{20}
g_{-27}
\varepsilon_{5}-\varepsilon_{8}
-\varepsilon_{4}-\varepsilon_{8}
Module 112(0, 0, 0, -1, -1, -1, -1, 0)(0, 0, 0, 0, 1, 1, 0, 1)g_{21}
g_{-26}
\varepsilon_{5}+\varepsilon_{8}
-\varepsilon_{4}+\varepsilon_{8}
Module 123(0, 0, 0, 0, 0, -1, -1, -1)(0, 0, 0, 0, 0, 1, 1, 1)g_{22}
h_{8}+h_{7}+h_{6}
g_{-22}
\varepsilon_{6}+\varepsilon_{7}
0
-\varepsilon_{6}-\varepsilon_{7}
Module 132(0, 0, 0, 0, -1, -1, 0, -1)(0, 0, 0, 1, 1, 1, 1, 0)g_{26}
g_{-21}
\varepsilon_{4}-\varepsilon_{8}
-\varepsilon_{5}-\varepsilon_{8}
Module 142(0, 0, 0, 0, -1, -1, -1, 0)(0, 0, 0, 1, 1, 1, 0, 1)g_{27}
g_{-20}
\varepsilon_{4}+\varepsilon_{8}
-\varepsilon_{5}+\varepsilon_{8}
Module 154(0, 0, 0, -1, -1, -2, -1, -1)(0, 0, 0, 0, 1, 1, 1, 1)g_{28}
g_{-19}
g_{5}
g_{-39}
\varepsilon_{5}+\varepsilon_{7}
-\varepsilon_{4}+\varepsilon_{7}
\varepsilon_{5}-\varepsilon_{6}
-\varepsilon_{4}-\varepsilon_{6}
Module 163(-1, -1, -1, -1, -1, -1, 0, -1)(0, 0, 1, 1, 1, 1, 1, 0)g_{31}
g_{36}
g_{-41}
\varepsilon_{3}-\varepsilon_{8}
\varepsilon_{2}-\varepsilon_{8}
-\varepsilon_{1}-\varepsilon_{8}
Module 173(-1, -1, -1, -1, -1, -1, -1, 0)(0, 0, 1, 1, 1, 1, 0, 1)g_{32}
g_{37}
g_{-40}
\varepsilon_{3}+\varepsilon_{8}
\varepsilon_{2}+\varepsilon_{8}
-\varepsilon_{1}+\varepsilon_{8}
Module 184(0, 0, 0, 0, -1, -2, -1, -1)(0, 0, 0, 1, 1, 1, 1, 1)g_{33}
g_{-13}
g_{12}
g_{-34}
\varepsilon_{4}+\varepsilon_{7}
-\varepsilon_{5}+\varepsilon_{7}
\varepsilon_{4}-\varepsilon_{6}
-\varepsilon_{5}-\varepsilon_{6}
Module 194(0, 0, 0, -1, -1, -1, -1, -1)(0, 0, 0, 0, 1, 2, 1, 1)g_{34}
g_{-12}
g_{13}
g_{-33}
\varepsilon_{5}+\varepsilon_{6}
-\varepsilon_{4}+\varepsilon_{6}
\varepsilon_{5}-\varepsilon_{7}
-\varepsilon_{4}-\varepsilon_{7}
Module 206(-1, -1, -1, -1, -1, -2, -1, -1)(0, 0, 1, 1, 1, 1, 1, 1)g_{38}
g_{42}
g_{18}
g_{-35}
g_{24}
g_{-48}
\varepsilon_{3}+\varepsilon_{7}
\varepsilon_{2}+\varepsilon_{7}
\varepsilon_{3}-\varepsilon_{6}
-\varepsilon_{1}+\varepsilon_{7}
\varepsilon_{2}-\varepsilon_{6}
-\varepsilon_{1}-\varepsilon_{6}
Module 214(0, 0, 0, 0, -1, -1, -1, -1)(0, 0, 0, 1, 1, 2, 1, 1)g_{39}
g_{-5}
g_{19}
g_{-28}
\varepsilon_{4}+\varepsilon_{6}
-\varepsilon_{5}+\varepsilon_{6}
\varepsilon_{4}-\varepsilon_{7}
-\varepsilon_{5}-\varepsilon_{7}
Module 223(0, 0, -1, -1, -1, -1, 0, -1)(1, 1, 1, 1, 1, 1, 1, 0)g_{40}
g_{-37}
g_{-32}
\varepsilon_{1}-\varepsilon_{8}
-\varepsilon_{2}-\varepsilon_{8}
-\varepsilon_{3}-\varepsilon_{8}
Module 233(0, 0, -1, -1, -1, -1, -1, 0)(1, 1, 1, 1, 1, 1, 0, 1)g_{41}
g_{-36}
g_{-31}
\varepsilon_{1}+\varepsilon_{8}
-\varepsilon_{2}+\varepsilon_{8}
-\varepsilon_{3}+\varepsilon_{8}
Module 246(-1, -1, -1, -1, -1, -1, -1, -1)(0, 0, 1, 1, 1, 2, 1, 1)g_{43}
g_{46}
g_{25}
g_{-29}
g_{30}
g_{-45}
\varepsilon_{3}+\varepsilon_{6}
\varepsilon_{2}+\varepsilon_{6}
\varepsilon_{3}-\varepsilon_{7}
-\varepsilon_{1}+\varepsilon_{6}
\varepsilon_{2}-\varepsilon_{7}
-\varepsilon_{1}-\varepsilon_{7}
Module 253(0, 0, 0, -1, -2, -2, -1, -1)(0, 0, 0, 1, 2, 2, 1, 1)g_{44}
h_{8}+h_{7}+2h_{6}+2h_{5}+h_{4}
g_{-44}
\varepsilon_{4}+\varepsilon_{5}
0
-\varepsilon_{4}-\varepsilon_{5}
Module 266(0, 0, -1, -1, -1, -2, -1, -1)(1, 1, 1, 1, 1, 1, 1, 1)g_{45}
g_{-30}
g_{29}
g_{-25}
g_{-46}
g_{-43}
\varepsilon_{1}+\varepsilon_{7}
-\varepsilon_{2}+\varepsilon_{7}
\varepsilon_{1}-\varepsilon_{6}
-\varepsilon_{3}+\varepsilon_{7}
-\varepsilon_{2}-\varepsilon_{6}
-\varepsilon_{3}-\varepsilon_{6}
Module 276(-1, -1, -1, -2, -2, -2, -1, -1)(0, 0, 1, 1, 2, 2, 1, 1)g_{47}
g_{49}
g_{3}
g_{-23}
g_{10}
g_{-53}
\varepsilon_{3}+\varepsilon_{5}
\varepsilon_{2}+\varepsilon_{5}
\varepsilon_{3}-\varepsilon_{4}
-\varepsilon_{1}+\varepsilon_{5}
\varepsilon_{2}-\varepsilon_{4}
-\varepsilon_{1}-\varepsilon_{4}
Module 286(0, 0, -1, -1, -1, -1, -1, -1)(1, 1, 1, 1, 1, 2, 1, 1)g_{48}
g_{-24}
g_{35}
g_{-18}
g_{-42}
g_{-38}
\varepsilon_{1}+\varepsilon_{6}
-\varepsilon_{2}+\varepsilon_{6}
\varepsilon_{1}-\varepsilon_{7}
-\varepsilon_{3}+\varepsilon_{6}
-\varepsilon_{2}-\varepsilon_{7}
-\varepsilon_{3}-\varepsilon_{7}
Module 296(-1, -1, -1, -1, -2, -2, -1, -1)(0, 0, 1, 2, 2, 2, 1, 1)g_{50}
g_{52}
g_{11}
g_{-16}
g_{17}
g_{-51}
\varepsilon_{3}+\varepsilon_{4}
\varepsilon_{2}+\varepsilon_{4}
\varepsilon_{3}-\varepsilon_{5}
-\varepsilon_{1}+\varepsilon_{4}
\varepsilon_{2}-\varepsilon_{5}
-\varepsilon_{1}-\varepsilon_{5}
Module 306(0, 0, -1, -2, -2, -2, -1, -1)(1, 1, 1, 1, 2, 2, 1, 1)g_{51}
g_{-17}
g_{16}
g_{-11}
g_{-52}
g_{-50}
\varepsilon_{1}+\varepsilon_{5}
-\varepsilon_{2}+\varepsilon_{5}
\varepsilon_{1}-\varepsilon_{4}
-\varepsilon_{3}+\varepsilon_{5}
-\varepsilon_{2}-\varepsilon_{4}
-\varepsilon_{3}-\varepsilon_{4}
Module 316(0, 0, -1, -1, -2, -2, -1, -1)(1, 1, 1, 2, 2, 2, 1, 1)g_{53}
g_{-10}
g_{23}
g_{-3}
g_{-49}
g_{-47}
\varepsilon_{1}+\varepsilon_{4}
-\varepsilon_{2}+\varepsilon_{4}
\varepsilon_{1}-\varepsilon_{5}
-\varepsilon_{3}+\varepsilon_{4}
-\varepsilon_{2}-\varepsilon_{5}
-\varepsilon_{3}-\varepsilon_{5}
Module 323(-1, 0, 0, 0, 0, 0, 0, 0)(0, 1, 2, 2, 2, 2, 1, 1)g_{54}
g_{-9}
g_{-1}
\varepsilon_{2}+\varepsilon_{3}
-\varepsilon_{1}+\varepsilon_{3}
-\varepsilon_{1}+\varepsilon_{2}
Module 338(-1, -1, -2, -2, -2, -2, -1, -1)(1, 1, 2, 2, 2, 2, 1, 1)g_{55}
g_{-2}
g_{56}
-h_{2}
h_{8}+h_{7}+2h_{6}+2h_{5}+2h_{4}+2h_{3}+2h_{2}+h_{1}
g_{-56}
g_{2}
g_{-55}
\varepsilon_{1}+\varepsilon_{3}
-\varepsilon_{2}+\varepsilon_{3}
\varepsilon_{1}+\varepsilon_{2}
0
0
-\varepsilon_{1}-\varepsilon_{2}
\varepsilon_{2}-\varepsilon_{3}
-\varepsilon_{1}-\varepsilon_{3}
Module 341(0, 0, 0, 0, 0, 0, 0, 0)(0, 0, 0, 0, 0, 0, 0, 0)h_{4}0
Module 351(0, 0, 0, 0, 0, 0, 0, 0)(0, 0, 0, 0, 0, 0, 0, 0)h_{6}0
Module 361(0, 0, 0, 0, 0, 0, 0, 0)(0, 0, 0, 0, 0, 0, 0, 0)h_{7}+h_{5}+h_{3}-h_{1}0
Module 371(0, 0, 0, 0, 0, 0, 0, 0)(0, 0, 0, 0, 0, 0, 0, 0)h_{8}+h_{5}+h_{3}-h_{1}0

Information about the subalgebra generation algorithm.
Heirs rejected due to having symmetric Cartan type outside of list dictated by parabolic heirs: 29
Heirs rejected due to not being maximally dominant: 2
Heirs rejected due to not being maximal with respect to small Dynkin diagram automorphism that extends to ambient automorphism: 2
Heirs rejected due to having ambient Lie algebra decomposition iso to an already found subalgebra: 2
Parabolically induced by A^{1}_2+A^{1}_1
Potential Dynkin type extensions: A^{1}_2+3A^{1}_1,